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1. Introduction

Finding exact methods of solving string theory on AdS space, as motivated by the

AdS/CFT correspondence, remains a difficult problem. There are two schemes for de-

scribing such a superstring. The NSR description gives a free action in a flat background

but the existence of the RR vertex operators introduces seemingly insurmountable diffi-

culties. Alternatively there is the GS formalism in which the supersymmetry exists on the

target manifold which is then described as a Lie supergroup or supercoset space.

It has proved possible to describe superstring theory on AdSn × Sn as a coset space

G/H (for example, AdS2 ×S2 is the bosonic subalgebra of PSU(1,1|2)
U(1)×U(1) [1], and AdS5 × S5 is

the same for PSU(2,2|4)
SO(4,1)×SO(5) [2 – 4].) Although G is Ricci flat in both these instances, the coset

space is not. However, H is the invariant locus of a Z4 automorphism, and this permits

the introduction of a WZ-term to provide a quantum conformal theory. (Indeed [5, 6]

have demonstrated quantum conformal invariance given a Zn automorphism.) Similarly

superstring theory on AdS3 × S3 is related to a sigma model on PSU(1, 1|2) [7]. More

general work has looked at sigma models on the supergroups PSL(n|n) [8].

All of these models contain an infinite number of local and non-local conserved charges.

Their existence constrains the S-matrix and permits its exact computation. These charges
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have been studied in both bosonic and worldsheet supersymmetric principal chiral models

(PCMs) [9], and for sigma models on symmetric spaces [10, 11].

The PCM on any Lie supergroup is classically conformal. In the quantum model, the

one loop beta function is proportional to the dual Coxeter number h∨ [8, 12], and there

are some superalgebras for which this vanishes (namely psu(n|n) and osp(2n+2|2n)). The

PCM on these supergroups will therefore be quantum conformal [8, 13]. However we do

not expect conformal invariance to survive in the quantum model for general supergroups

when the model becomes massive. This paper is a modest attempt at understanding the

algebra of these models’ local charges, with the hope that some insight could be given to

the perhaps more physical models.

Ultimately we find that the classical PCM on a supergroup has an infinite number of

charges in involution. These charges are formed from integrals of local conserved currents,

each associated to an invariant of the Lie superalgebra. Only a finite number of these

are independent, and from these invariants it is possible to construct all conserved local

currents.

For the su(m|n) models we will construct a set of currents which give rise to commuting

charges. The construction will fail for m = n, so we restrict ourselves to the massive cases.

The situation is analogous for osp(m|2n), except now a family of currents exists, depending

on a free parameter α. For osp(2m|2n) an additional invariant exists, the superpfaffian [14],

and requiring that the superpfaffian charge commutes with the other local charges fixes

the value of α, but only when the model is massive.

These charges are conserved classically, but anomalies might arise in the quantum

model. However we anticipate that integrability survives because we can use Goldschmidt

and Witten’s method of anomaly counting [15] to show that higher spin conservation laws

still exist.

In addition to the local charges, there are non-local charges which form a Super-

Yangian structure [16 – 18]. We shall show that these non-local charges are in involution

with the local charges.

1.1 Lie superalgebras

We begin with a basic introduction to superalgebras, and refer to the literature [19 – 21]

for a more thorough review. Throughout this paper, letters A,B,C, . . . will denote both

bosonic and fermionic indices. a, b, c, . . . will be used for bosonic indices, and α, β, γ, . . . for

fermionic indices.

We begin with an associative Grassmann algebra Λ = Λ0̄ ⊕ Λ1̄ with sufficiently many

anticommuting generators, where Λ0̄ (resp. Λ1̄) consists of commuting (resp. anticommut-

ing) elements. We have the product rule Λī ·Λj̄ ⊂ Λi+j . (Addition modulo 2 is left implicit

here and throughout.)

Given a supermatrix X =
(A B
C D

)

we define it to be even (odd) if A,D ∈ Λ0̄ (Λ1̄) and

B,C ∈ Λ1̄ (Λ0̄). We write deg(X) = 0 if it is even and deg(X) = 1 if odd. We can then

define the supertrace as

Str(X) = Tr(A) − (−1)deg(X)Tr(D) (1.1)
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the supertranspose as

XST =

(

AT −(−1)deg(X)BT

(−1)deg(X)CT DT

)

(1.2)

and if X is even and invertible, the superdeterminant as

sdet(X) =
det(A − BD−1C)

det(D)
=

det(A)

det(D − CA−1B)
. (1.3)

These satisfy the important properties

(XY )ST = (−1)deg(X)deg(Y )Y ST XST (1.4)

Str(XY ) = (−1)deg(X)deg(Y )Str(Y X) , Str(XST ) = Str(X) (1.5)

sdet(XY ) = sdet(X)sdet(Y ) , sdet(XST ) = sdet(X) (1.6)

sdet(exp(X)) = exp(Str(X)) (1.7)

We consider a simple connnected supergroup G [19], either SU(m|n) for m 6= n, or the

compact subgroup of OSp(m|2n) which is connected to the identity, satisfying

SU(m|n) : sdetX = 1 XX† = 1 (1.8)

OSp(m|2n) : sdet(X) = 1 XST HX = H (1.9)

where H =
(

I 0
0 J

)

for an symmetric I and symplectic J . There exists a basis for which I is

the identity Im and J =
( 0 In

−In 0

)

.

Instead of the non-simple Lie superalgebra SU(n|n), we shall look at PSU(n|n), which

is SU(n|n) modulus the identity.

Given an element of the supergroup, we can write it in terms of its superalgebra

generators TA

g = exp(xATA) = exp(xaT
a) exp(xαTα) (1.10)

where T a (respectively Tα) generate g0̄ (respectively g1̄). These satisfy the supercommu-

tation relationship

[TA, TB ] = TATB − (−1)ηAηBTBTA = fAB
CTC (1.11)

for structure constants fAB
C , anti-supersymmetric in the first two, and the first and last

indices.

We denote by ηA the grade of TA in the Lie superalgebra. The xA commute (resp.

anticommute) whenever the TA are graded even (resp. odd), and so we can define without

ambiguity ηA to be the gradation of xA in the Grassmann algebra. The local currents from

the PCM are constructed from elements of this Lie algebra.

We are interested in the Lie superalgebras su(m|n), and osp(m|2n), satisfying

su(m|n) : Str(X) = 0 , X = −X† (1.12)

osp(m|2n) : XST = −HXH−1 (1.13)

– 3 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
0

For psu(n|n) we begin with gl(n|n) and its generators: the 2n × 2n identity I, J =

diag(1, . . . , 1,−1, . . . ,−1), and the supertraceless, traceless and anti-hermitian TA, A =

1, . . . , 4n2 − 2. The identity and the TA generate sl(n|n). The TA get projected onto the

generators of psu(n|n), but do not close under commutation

[TA, TB ] = FAB
C TC + dAB

I

and so we always work modulus the identity. i.e. Two elements X,Y ∈ psu(n|n) are

equivalent if their difference is a multiple of the identity.

For the Lie superalgebras su(m|n) (m 6= n), psu(n|n) and osp(m|2n) we can define

a non-degenerate invariant bilinear form GAB = Str(TATB). Note that this implies that

GAB = 0 unless ηA = ηB (consistency) and that GAB = (−1)ηAGBA (supersymmetry). We

define the inverse GAB via

GABGBC = δ C
A (1.14)

Note in particular that this implies that

GABXAYB = XAY A = (−1)ηAXAYA = GBAXAY B . (1.15)

We will make much use of the completeness condition in what is to follow. For any

X = XATA ∈ g we have

XA = Str(TAX). (1.16)

2. Local charges of the PCM

The PCM is defined by the lagrangian

L =
κ

2
Str(∂µg−1∂µg) (2.1)

where g takes values in a supergroup G, either SU(m|n) or OSp(m|2n). κ is a dimensionless

constant, its value unimportant for the classical model, and µ indexes the 1+1D spacetime.

This lagrangian is invariant under a global chiral symmetry g(x, t) → g1g(x, t)g−1
2 , with

associated Noether conserved local currents

jL
µ = κ∂µgg−1 , jR

µ = −κg−1∂µg. (2.2)

The conservation of these currents are the equations of motion. These currents belong

to the even subspace of g ⊗ Λ.

The PSU(n|n) model is more complicated because no matrix representation for the

superalgebra exists. It has been suggested [8] to consider the SU(n|n) model, which is

in addition invariant under the U(1) gauge symmetry g(x) 7→ eφ(x)g(x). However no non-

degenerate metric exists for su(n|n), and this will complicate the construction of commuting

charges. It would be interesting to pursue the construction further because of the quantum

conformal invariance of these models.

From the Noether conserved currents (2.2) it is possible to construct higher spin local

and non-local conserved charges. Using either the left or right currents will give rise to
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identical local charges. The non-local charges constructed from them are not equal, but

form two copies of a super-Yangian structure. When there is no confusion, we shall drop

the L/R indices.

We assume appropriate boundary conditions on jµ(x)

jµ(x) = 0 as x → ±∞. (2.3)

The currents are conserved, and satisfy the Bianchi identity

∂µjµ = 0 , ∂µjν − ∂νjµ − 1

κ
[jµ, jν ] = 0. (2.4)

Immediately we can form conserved charges out of the Noether currents (2.2) by Q(0) =
∫

dx j0. More importantly though, conditions (2.4) allow us to form a local conserved

charge of spin s through the use of a G-invariant tensor of degree s+1. Although there are

infinitely many such invariant tensors, there are only finitely many independent (primitive)

tensors. The number is equal to the rank of g. All other invariants are constructed from

these primitive ones.

The intention is to find a maximal set of mutually commuting conserved local charges

{qs}. The existence of these currents displays the integrable nature of the PCM, because

(equivalent to the construction of non-local charges) the two conditions in (2.4) allow a

Lax pair to be constructed.

It will prove useful to write conditions (2.4) in terms of light-cone coordinates, x± =
1
2 (t ± x)

∂−j+ = −∂+j− = − 1

2κ
[j+, j−]. (2.5)

2.1 The energy-momentum tensor and conformal invariance

The energy-momentum tensor is the variation of the lagrangian with respect to the space-

time metric,

Tµν = − 1

2κ

(

Str(jµjν) −
1

2
ηµνStr(jρj

ρ)

)

(2.6)

This is traceless, symmetric and conserved. In light-cone coordinates

T±± = − 1

2κ
Str(j±j±) , T+− = T−+ = 0. (2.7)

and

∂−T++ = ∂+T−− = 0 (2.8)

Here T+− is the trace of the two-dimensional energy-momentum and its vanishing im-

plies that the model has classical conformal invariance. The situation is more complicated

in the presence of quantum anomalies. The one loop beta function is proportional to h∨,

the dual Coxeter number of the Lie (super)algebra [12]. For purely bosonic Lie algebras,

h∨ 6= 0, and so a WZ term must be added to the lagrangian for conformal invariance in

the quantum model [9]. However there are some Lie superalgebras (namely psl(n|n) and

osp(2n + 2|2n)) for which h∨ = 0, and these models retain conformal invariance in the

quantum model, at least to one loop [8, 13].

– 5 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
0

We note here that we can form a series of higher-spin conservation laws,

∂−(T p
++) = ∂+(T p

−−) = 0. (2.9)

These give the classical conformal symmetry of the model, but are not expected to be

preserved for the quantum models for which the dual Coxeter number is non-zero. We shall

not be concerned with these directly however, as we shall see that more general higher-spin

currents can be formed.

2.2 Canonical formalism

Our aim here is to calculate the super-Poisson brackets (SPBs) for the current components

jµA [22]. As in the bosonic case [9, 23], it is convenient to introduce the non-local operator

∆1 = ∂1 − 1
κ [j1, ] using which the Bianchi identity is re-expressed as j0 = ∆−1

1 (∂0j1). We

can now write the action as a functional of j1(x) only

L =
1

2κ
Str((∆−2

1 ∂0j1)(∂0j1) − j2
1) (2.10)

(where we have imposed suitable boundary conditions such that ∆−1
1 (A)B = −A∆−1

1 (B)

up to a total divergence).

Defining the conjugate momentum of j1 to be π = πATA, where πA = ∂L/∂(∂0j1A) we

find that j0 = −2κ∆1π. Then, using {j1A(x), πB(y)} = δB
Aδ(x − y), we find that

{j0A(x), j0B(y)} = (−1)χf C
AB j0C(x)δ(x − y)

{j0A(x), j1B(y)} = (−1)χf C
AB j1C(x)δ(x − y)

+κGAB∂xδ(x − y) (2.11)

{j1A(x), j1B(y)} = 0

where χ = ηA.ηB + ηA + ηB . In light-cone coordinates these become

{j±A(x), j±B(y)} = (−1)χf C
AB

(

3

2
j±C(x) − 1

2
j∓C(x)

)

δ(x − y)

±2κGABδ′(x − y) (2.12)

{j+A(x), j−B(y)} =
1

2
(−1)χf C

AB [j+C(x) + j−C(y)] δ(x − y)

These are very similar in form to the Poisson brackets of the bosonic model [9] but we

must take account of the non-trivial gradings.

2.3 Higher-spin conserved charges

We can construct the Noether GL × GR conserved charges

Q0
A =

∫ ∞

−∞
dx j0A(x) (2.13)
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for both left and right currents jL
µ and jR

µ . More interestingly we can use the above SPBs to

find an infinite set of commuting higher-spin holomorphic local currents. We shall obtain

the same set of local currents if we use either the left or right current. We first note

that, similar to the bosonic model [9], to every invariant tensor dA1...Ap (supersymmetric

in adjacent indices) associated with a Casimir element of degree p, we can associate a

conserved current of spin p. Denote such a Casimir element

Cp = dA1,...ApTA1 . . . TAp (2.14)

and supersymmetry means that

dA1...AkAk+1...Ap = (−1)
ηAk

ηAk+1dA1...Ak+1Ak...Ap (2.15)

We note that, for su(m|n) and osp(m|2n), dA1,...Ap = 0 unless
∑

ηAi = 0. Indeed,

Casimir elements are bosonic for all basic superalgebras except Q(n) [19]. Invariance then

implies that

[Cp, TB ] = 0 ⇒
p

∑

i=1

(−1)ηB(ηAi
+···ηAp)dA1...ÂiC...ApfAiB

C = 0 (2.16)

We define the action of this tensor on an element of the Lie superalgebra X = XATA

by

d(p)(X) = dA1...ApXA1 . . . XAp (2.17)

and observe that it is G-invariant

d(p)(gXg−1) = d(p)(X) for g ∈ G. (2.18)

We can simplify matters by noting that every element of a Lie (super)algebra is locally

conjugate to some element of its Cartan subalgebra (CSA), h ⊂ g i.e. its maximal abelian

subgroup. For most basic Lie superalgebras, h is the CSA of its bosonic subalgebra h ⊂ g0̄.

Using the invariance property we then have

d(p)(X) = d(p)(H) = da1...apHa1 . . . Hap (2.19)

where H = HaT
a = gXg−1 ∈ h. We can thus consider the invariant tensor to be restricted

to the CSA, and so we are only interested in the invariants of the underlying bosonic Lie

subalgebra.1

To each superalgebra there are an infinite number of invariant tensors, notably of the

form Str(TA1 . . . TAm), but there are only finite many independent (or primitive) tensors,

the number being equal to the rank of the superalgebra. All local conserved charges will

be generated by charges formed from these primitive tensors. These primitive tensors were

discussed in [24, 25] for the bosonic algebras, and for superalgebras in [26, 27]

An infinite set of higher spin conserved charges can be constructed from tensors which

satisfy (2.16). Using (2.5) it is straightforward to verify that

∂−(dA1...Apj+Ap . . . j+A1) = 0 (2.20)

1The exception is the strange superalgebra Q(n), where h ∩ g1̄ 6= ∅ [19].
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where the change in ordering of the indices is non-trivial because of the Z2-grading (2.15).

Then the local conserved charges are

q±s =

∫

dx dA1...As+1j±As+1(x) . . . j±A1(x). (2.21)

The charges are labelled by s, their spin. The Poisson bracket with the (purely bosonic)

boost generator M is {M, q±s} = ±sq±s. We shall define the charges q±s with s > 0 as

having positive/negative chirality. The additive nature of these local charges implies that

they have a trivial coproduct

∆(q±s) = q±s ⊗ I + I ⊗ q±s (2.22)

Using the invariance condition (2.16), it is simple to show that {q+r, q−s} = 0 for any

integers r, s > 0. Furthermore, for charges of equal chirality, only the non-ultra local terms

contribute.

{q±r, q±s} = ±2(r + 1)(s + 1)κ

∫

dx (−1)ηB(ηB1
+···+ηBs )dA1...ArAdB1...BsBGAB

×j±A1 . . . j±Ar∂x(j±B1 . . . j±Bs) (2.23)

We are interested in the currents formed from a tensor with components dA1...Ar =

sStr(TA1 . . . TAr), which satisfies (2.16). sStr denotes the normalised supersymmetric su-

pertrace

sStr(TA1TA2 . . . TAr) =
1

r!

∑

σ∈Sr

εσStr(TAσ(1)TAσ(2) . . . TAσ(r)) (2.24)

where Sr is the symmetric group of degree r, and εσ = −1 if σ involves an odd number

of permutations of fermionic indices, and equals 1 otherwise. This tensor is exactly zero

unless ηA1 + · · · + ηAr = 0 mod 2. This gives rise to holomorphic currents J±r = Str(jr
±),

and associated conserved charges

q±(r−1) =

∫

dx Str(jr
±), (2.25)

and we find that that equation (2.23) simplifies to

{q±r, q±s} = ±2(r + 1)(s + 1)κ

∫

dx Str(jr
±TA)∂xStr(js

±TA). (2.26)

We now want to find the currents Jr(x) (or indeed, algebraic functions of them) which

give rise to charges in involution. In particular we note that q±2 always commutes with

the other charges, showing that all higher-spin charges are classically in involution with

energy-momentum.

We must now deal separately with the cases G = SU(m|n) and G = OSp(m|2n), and

we shall see that in the former case we must impose m 6= n.
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2.4 Commuting charges for SU(m|n)

We first consider the simple supergroups SU(m|n) for m 6= n. It is evident that X ∈
su(m|n) does not imply Xp ∈ su(m|n) for all integers p because supertracelessness will

not in general hold. In the case m 6= n we can replace jr
+ by the supertraceless and

anti-hermitian jr
+ − (1/l)Str(jr

+)Im+n where l = m − n, and then using the completeness

condition (1.16) we find

{q±r, q±s} = ∓2(r + 1)(s + 1)κ

l

∫

dx Str(jr
±)∂xStr(js

±) (2.27)

This term is not in general zero. It is necessary to know the exact form of the Poisson

brackets for J±r = Str(jr
±). After some computation the result is

{Jr(x),Js(y)} =
(rs

l
Jr−1(x)Js−1(x) − rsJr+s−2(x)

)

δ′(x − y) (2.28)

+

(

rs

l
Jr−1(x)J ′

s−1(x) − rs(s − 1)

(r + s − 2)
J ′

r+s−2(x)

)

δ(x − y)

Note the similarity between this and the Poisson brackets for the currents of the bosonic

SU(l) model [9]. Indeed, these Poisson brackets are all antisymmetric, and feature purely

bosonic currents. This is also the point where we must distinguish between the quantum

conformal model PSU(n|n) and the non-conformal models.

We now want to find a set of algebraically independent currents which give rise to a set

of mutually commuting charges. We follow a similar method to [9] and define a generating

function A(x, λ) with a spectral parameter λ by

A(x, λ) = sdet (1 − λj+(x)) = exp

(

−
∞

∑

r=2

λr

r
Jr(x)

)

(2.29)

and then claim that the set of currents defined by

Kr+1(x) = A(x, λ)r/l
∣

∣

∣

λr+1
(2.30)

form commuting charges upon integration over space.

∫

dx dy{A(x, µ)r/l, A(y, ν)s/l}
∣

∣

∣

∣

µr+1νs+1

= 0 (2.31)

This differs from the bosonic model [9] in that (2.29) is not a polynomial of finite order

in λ (as it is in the bosonic case), but a rational function. For the bosonic model, when

r ≡ 0 mod l current (2.30) would be exactly zero. The local charges therefore have spins

equal to the exponents of the Lie algebra modulo its Coxeter number h. No such pattern

seems to exist for the supergroup model, and (2.30) seems to be non-zero for all positive

integer values of r.

However after noting this, we can proceed with an analogous argument. We calculate

{ln A(x, µ), ln A(y, ν)} using (2.28), and thence it is seen that (2.31) is satisfied.
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The infinite number of currents (2.30) are not algebraically independent. The number

of independent currents is equal to the rank of the superalgebra, so for su(m|n) there are

m + n − 1 independent currents. Therefore a maximal set of algebraically independent

currents which form commuting charges are

{Ki(x) | 2 ≤ i ≤ m + n}. (2.32)

Any higher spin currents which give further commuting charges must necessarily be

algebraic functions of these currents. The form of the currents is identical to that of

SU(m−n) [9], but we shall reproduce the first few examples of them here for completeness.

K2 = J2

K3 = J3

K4 = J4 −
3

2(m − n)
J 2

2

K5 = J5 −
10

3(m − n)
J3J2 (2.33)

2.5 Commuting charges for PSU(n|n)

To construct invariants on psu(n|n), we first note that they are also necessarily invariants

of su(n|n). We can therefore consider invariants of su(n|n) which are in addition invariant

under the U(1) gauge symmetry g(x) 7→ eφ(x)g(x). Higher spin invariant currents of su(n|n)

are of the form Jm = 1
m!Str(jm

± ) for j± ∈ su(n|n). It is simple to show that

T2 = J2 , T2m =

2m−2
∑

k=2

(−1)kJkJ2m−k ,m ≥ 2 (2.34)

are invariant under the additional gauge symmetry.

Unfortunately our previous construction of charges in involution cannot be repeated

for these models. There is no matrix representation of psu(n|n) and we are forced to work

in su(n|n), where we encounter difficulties due to the degeneracy of the metric. We do not

know how to circumvent this problem. Nevertheless, we still expect that an infinite number

of commuting local charges exist, particularly as these models are quantum conformal. I

hope to investigate this in future work.

2.6 Commuting charges for OSp(m|2n)

Using the defining relation for this superalgebra, we see that X ∈ osp(m|2n) implies that

Xp ∈ osp(m|2n) if p is odd. So for such p, we can use the completeness condition (1.16) to

show that the integrand of (2.26) is a total divergence, and thus that the charges commute.

{q±r, q±s} = ±2s(r + 1)(s + 1)κ

r + s

∫

dx ∂xStr(jr+s
± ) = 0 (2.35)

So for the OSp(m|2n) model, the set of qr defined by (2.25) for r odd is a set of

mutually commuting charges. (For r even, these charges are exactly zero.)

– 10 –
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We will find that we can derive more interesting conserved charges if we calculate the

equal-time Poisson brackets for the currents using (2.12).

{Jr(x),Js(y)} = −rsJr+s−2(x)δ′(x − y) − rs(s − 1)

(r + s − 2)
J ′

r+s−2(x)δ(x − y) (2.36)

This equation holds for all r, s ≥ 1, but is only interesting for even r, s. Again we

note the similarity between these relations and those given for the bosonic orthogonal and

symplectic algebras [9]. Analogous to these models we will find a family of commuting

currents, with a free parameter α. We can formulate these currents through the use of

generating functions with a parameter λ. We define

B(x, λ) = sdet(1 −
√

λj+(x)) = exp

(

−
∞

∑

r=1

λr

2r
J2r(x)

)

(2.37)

and find that the currents defined by

Kr+1(x) = B(x, λ)αr|λ(r+1)/2 (2.38)

give rise to a mutually commuting set of currents

∫

dx dy {B(x, µ)αr, B(y, ν)αs}
∣

∣

∣

∣

µ(r+1)/2ν(s+1)/2

= 0. (2.39)

The argument proceeds similarly to the unitary case. The difference now is that we

have a family of commuting charges, depending on a free parameter α. The resulting

currents are similar in form to the orthogonal and symplectic cases [9]. We reproduce

them here.

K2 = J2

K4 = J4 −
3α

2
J 2

2

K6 = J6 −
15α

4
J4J2 +

25α2

8
J 3

2

K8 = J8 −
14α

3
J6J2 −

7α

4
J 2

4 +
49α2

4
J4J 2

2 − 343α3

48
J 4

2 (2.40)

2.6.1 The superpfaffian

For SO(2l) there is another conserved current which cannot be expressed as the trace of a

power of j+(x): the Pfaffian current of spin l,

P(x) = εI1J1...IlJl(j+)I1J1 . . . (j+)IlJl
(2.41)

By requiring that the charge associated to this current is in involution with the set

of commuting charges formed from traces, the value of α is fixed to be 1/(2l − 2) [9]. A

similar situation exists for OSp(2m|2n), for which there exists an analogous current, the

superpfaffian current of spin m − n [14]. Its charge is in involution with the supertrace

currents fixes α to be 1/(2m − 2n − 2). The superpfaffian current differs from the others

– 11 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
0

already considered in that it cannot be written in the form dA1...Apj±A1 . . . j±Ap , but is

instead a rational function.

Given any supermatrix written in block form
(A B
C D

)

for which D is invertible, we define

the superpfaffian to be

Spf

(

A B

C D

)

=
Pfaff(A − BD−1C)

√

det(D)
=

Pfaff(A)
√

det(D − CA−1B)
(2.42)

where Pfaff is the ordinary pfaffian.

Let j+(x) ∈ osp(2m|2n). Every element of a Lie superalgebra is locally conjugate to

some element of the Cartan subalgebra. So there exists U(x) ∈ OSp(2m|2n) such that

Uj+U−1 = diag

([

0 λ1

−λ1 0

]

, . . . ,

[

0 λm

−λm 0

]

, iµ1, . . . iµn,−iµ1, . . . ,−iµn

)

(2.43)

for real λi(x), µj(x) (the weights) [10]. The currents that we are interested in can be

expressed as functions of the m + n weights.

We first note that we can write (2.37) as

sdet(1 −
√

νj+(x)) =
(1 + νλ2

1) . . . (1 + νλ2
m)

(1 + νµ2
1) . . . (1 + νµ2

n)
(2.44)

and then the supertrace currents (2.38) which give commuting charges can be expressed in

terms of the weights as

Kp(x) =

[

(1 + νλ2
1) . . . (1 + νλ2

m)

(1 + νµ2
1) . . . (1 + νµ2

n)

]α(p−1)
∣

∣

∣

∣

∣

νp/2

(2.45)

or equivalently as

Kp(x) = exp



−α(p − 1)
∑

r=1

(−1)rνr

r





∑

i

λ2r
i −

∑

j

µ2r
j









∣

∣

∣

∣

∣

∣

νp/2

(2.46)

Our conserved superpfaffian current can then be written in terms of the weights as

P(x) = spf(j+(x)) =

∣

∣

∣

∣

λ1 . . . λm

µ1 . . . µn

∣

∣

∣

∣

(2.47)

and our claim is that requiring
∫

dx dy {Kp(x),P(y)} = 0 for all (even) p will constrain α

to be (2m − 2n − 2)−1. We shall use the Poisson bracket relations

{λi(x), λj(y)} = −4κδijδ
′(x − y)

{µk(x), µl(y)} = 4κδklδ
′(x − y) (2.48)

(where the difference in signs comes from the definition of supertrace) to calculate (writing

C(x) = sdet(1 −√
νj+(x)) and β = α(p − 1) for convenience)

∫

dx dy {P(x), C(y)β} =

∫

dx dy βC(y)β−1{P(x), C(y)} (2.49)
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= 8βκν

∫

dx

(

m
∑

i=1

∂x

(P(x)

λi(x)

)

C(x)βλi(x)

1 + νλ2
i (x)

−
n

∑

k=1

∂x

( P(x)

µk(x)

)

C(x)βµk(x)

1 + νµ2
k(x)

)

= 8βκν

∫

dx

[

(m − n) − ν

β
∂ν − 1 − 1

2β

]

(∂xP(x)) C(x)β (2.50)

We are only interested in the coefficient of νp/2, and so we replace ν∂ν 7→ p/2− 1. We

then find that the term in square brackets vanishes if and only if α = 1/(2m − 2n − 2), as

required.

We immediately see that there is a similar pattern of spins for the local charges on

OSp(m|2n) and SO(m−2n); Saleur and Kaufmann [12] have studied the similarity between

the S-matrices of the models with these symmetries.

Interestingly, for the OSp(2n+2|2n) models (precisely those which are exactly confor-

mal) there exists no finite value of α for which the superpfaffian charge commutes with all

the other charges. This does not affect their integrability properties as it is still possible

to construct a Lax pair.

3. Non-local charges

In addition to the local charges, there are two infinite sets of conserved non-local charges,

which are elements of (g⊗Λ)0̄ and generate a chiral Yangian structure Y (g)L×Y (g)R [9, 28].

The full set of non-local charges are generated by the conserved local charge

Q
(0)
A =

∫ ∞

−∞
dx j0A(x) (3.1)

and the first non-local charge

Q
(1)
A =

∫ ∞

−∞
dxj1A(x) − 1

2κ
fBC

A

∫ ∞

−∞
dx j0B(x)

∫ x

−∞
dy j0C(y) (3.2)

where conservation follows from (2.4). Higher charges are formed from commutations of

these. Their construction in [28, 29] for the bosonic charges can be applied analogously

here.

To show that all local charges are in involution with the non-local charges, it suffices

to show that the local charges commute with the first two charges Q
(0)
A and Q

(1)
A .

The invariance of the d-tensor can be used in a straightforward fashion to show that

{qs, Q
(0)
A } = 0 (3.3)

Commutation of Q
(1)
A is not so simple to show, but we can proceed by using a similar

argument to [9]. We consider each of the two terms of Q
(1)
B separately, and using the

invariance property (2.16), we find that the commutation of the first term gives

{qs,

∫

dy j1B(y)} = −(s + 1)

∫

dx dCA1...Asf D
C Bj+As . . . j+A1j1D (3.4)
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As in [9], when looking at the second term we must be cautious when working with

the limits of the spatial integration. We thus integrate between ±L and then take the limit

L → ∞. We are interested in

{qs,

∫ L

−L
dy

∫ y

−L
dz fCD

Bj0C(y)j0D(z)} (3.5)

To evaluate this, we then introduce a step function,

∫ L

−L
dx

∫ L

−L
dy

∫ L

−L
dz dA1...As+1fCD

B{j+As+1(x) . . . jA1(x), j0C (y)j0D(z)}θ(y − z) (3.6)

All the ultra-local terms (i.e. the δ(x − y) and δ(x − z)) vanish by invariance (2.16),

and after some computation (noting that the currents vanish at infinity) we are left with

2κ(s + 1)

∫

dx dCA1...Asf D
C Bj+As . . . j+A1j0D (3.7)

We recombine results (3.4) and (3.7), and again use the invariance property (2.16) to

show the final result

{qs, Q
(1)
A } = 0 (3.8)

The Yangian charges do not in general commute.

{Q(0)
A , Q

(0)
B } = (−1)χf C

AB Q
(0)
C (3.9)

{Q(0)
A , Q

(1)
B } = (−1)χf C

AB Q
(1)
C (3.10)

where χ = ηA.ηB +ηA +ηB . Once equipped with the additional structure of a (non-trivial)

coproduct and counit, this is the expected form of the super-Yangian algebra [16 – 18].

4. Remarks on the quantum model

To determine whether the higher spin local currents are also conserved in the quantum

theory, we use the anomaly counting method of Goldschmidt and Witten [15]. This is a

rather indirect method, and does not convey an insight into the form of these anomalies.

Instead it tries to show that any quantum anomalies can be written in the form of a total

derivative, in which case a conservation law still exists, although in a modified form.

We must consider all possible anomaly terms which have the same behaviour under

the symmetries of the model. These symmetries comprise of the continuous Lorentz and

chiral symmetries, and also some discrete symmetries.

For any supergroup, the principal chiral model is invariant under the map π : g 7→
g−1. This exchanges the left and right currents. Additional symmetries arise as outer

autmorphisms of the underlying Lie superalgebras [19].

γ : g 7→ g∗ for g = su(m|n) (4.1)

σ : g 7→ MGM−1 for g = osp(2m|2n) (4.2)
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where M is an element of OSp(2m|2n) with superdeterminant −1. Each of the currents

Jr(x) are either odd or even under the action of all of these symmetries. The argument

proceeds identically to the bosonic PCM [9], and we shall not reproduce it all here, but

instead illustrate the idea with the spin 2 example. It does not matter for the following

whether we are considering su(m|n) or osp(m|2n); the results are the same for all models.

There are only two spin 2 currents, J2 = Str(j2
±). (We shall just consider the +

current, the argument is identical for the other.) This is even under the discrete symmetries,

invariant under the chiral symmetry, and of mass dimension 2. There is only one possible

anomaly term with identical behaviour, Str(j−∂+j+), which can be written as a total

derivative ∂+Str(j−j+). So the only possible correction to the conservation law is

∂−J2 = α∂+Str(j−j+) (4.3)

where α is some unknown parameter, and we have a modified conservation law. (Note that

α can be zero, and we would expect it to be so for those models which retain quantum

conformal invariance.)

Similar results hold for spin 3 and 4 currents, but not for higher spins. This does not

mean that there is no quantum conserved current, for the anomaly counting method is

sufficient but not necessary. Nevertheless, integrability is guaranteed by the existence of

one higher spin conservation law [30].

In the quantum model, the local charges are not enough to give the particle multi-

plets, and we must regard the particle states to be in a representation (V, V̄ ) of the chiral

super-Yangian Y (g)L × Y (g)R ⊃ gL × gR [9, 17]. Representations of superalgebras differ

considerably from the bosonic algebra, particularly the issue of atypicality [19].

We hope to pursue these issues further, by considering the S-matrix of these mod-

els [12]. It is anticipated that all the particle states are formed through tensor products

of basic representations of Y (g) (the bootstrap programme). Unlike bosonic algebras, the

tensor product of two irreducible representations of a superalgebra need not be reducible

(and indeed is only so for osp(2|2n)). We have seen that, for all superalgebras considered,

the super-Yangian commutes with each of the local charges classically. If this holds for

each local charge which survives quantization, then every particle multiplet will have the

same charge number, and their pattern of values should provide an alternative source of

information about the bootstrap programme.

5. Conclusions and further questions

We have derived a set of commuting charges for the principal chiral model on the Lie

supergroups SU(m|n) for m 6= n, and OSp(m|2n). These are integrals of local currents,

each constructed with the use of an invariant of the underlying Lie superalgebra.

The SU(m|n) models have conserved currents generated by m+n−1 primitive currents.

The current algebra is similar in appearance to that of SU(m − n).

The orthosymplectic models OSp(2m|2n) and OSp(2m + 1|2n) each have m + n prim-

itive currents from which the infinite charges can be calculated. For the former set of

models, the superpfaffian charge will only commute with the other charges if m 6= n + 1.
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The algebra of currents suggests a relationship between OSp(m|2n) and SO(m− 2n) mod-

els [12].

In the bosonic model there is a correlation between the degrees of the primitive currents

and the exponents of the underlying Lie algebra [9]. This same pattern of currents exists

for the affine Toda field theories [31 – 34]. It is therefore natural to wonder whether a

similar pattern exists between the local charges of the PCM on a supergroup and those

of the affine Toda field theory on a Lie superalgebra [35, 36]. The difficulty here is that

to each Lie superalgebra there may be associated more than one affine Toda field theory,

depending on the choice of inequivalent simple root system. It would be interesting to

consider whether the PCM shares any properties with these models.

Quantum conformal invariance is not expected for general Lie supergroups, but it

should be possible to introduce a WZ term which guarantees this at a certain critical limit.

The integrability of these models through a consideration of their local and non-local

conserved charges will be the scope of future work.

Similar to the arguments in this paper, the sigma model on a supercoset (either with

or without a WZ term) should exhibit local conserved charges. The construction of a set

of (classically) commuting charges for these models has yet to be explored.

For the PCM on a Lie Group in the presence of a boundary (i.e. on the half-line x < 0)

a natural connection arises between boundary integrability and symmetric spaces [37].

Future work will investigate the analogous boundary conditions to ensure integrability on

a supergroup.
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